データ組織のチーム・人材マネジメントの手法を解説

ナレッジ
2024.12.23
データ組織のチーム・人材マネジメントの手法を解説

今回は9月に開催されました「若手人材のマネジメント方法大放出!データ人材使いこなしセミナー」にて株式会社トラストバンク(以下トラストバンク)データマネジメントグループマネージャーの町田様へご講演いただきました内容を記事にてお伝えいたします。

登壇者紹介

町田泰基(まちだ やすのり)
株式会社トラストバンク データマネジメントグループマネージャー
経歴:福岡県北九州市生まれ。早稲田大学在学中に、偶然の出会いがあって新卒でトラストバンクに2020年入社。入社以来データマネジメントチームに所属しており、2024年4月よりマネージャーになる。
趣味:筋トレ、筋肉を活かせないゴルフ

 

目次
01.|トラストバンクデータチームについて
  トラストバンクのデータチームとは?どんな組織?
   これまでのデータ組織の歩み
02.|データ人材を活用し、成果を出すために持っておくべき考え方
  そもそもデータ人材の成果とは?
  目的やゴールの達成状態、課題や背景をできるだけ細かく言語化した上で、あとはデータ人材に自由にやってもらう
  チームの目標、ミッション、重要アクションを整理する。ミッションがあることでメンバーが主体的にアクションを起こせる状態にする
  業務系の仕事は自動化するか、極力やらない
  新しい技術を積極的に取り入れる
03.|若手専門人材との接し方
  【前提】若手人材は長く在籍することで中長期的に価値を発揮しやすい
  工数の30-50%は若手人材にとって成長につながるチャレンジ
  心理的安全性の高い状態を保つ
  【その他】マネジメントの落とし穴にハマらないように気をつける
      【その他】Winsession
04.|まとめ

 

トラストバンクデータチームについて

 

トラストバンクのデータチームとは?どんな組織?

トラストバンクのデータマネジメントグループはチョイス事業部内事業戦略部内に位置しており、総勢14名のメンバーで成り立っている組織です。

チョイス事業部は主に「ふるさとチョイス」、「めいぶつチョイス」に関するデータマネジメントを担っており、具体的にはデータ基盤の構築や、データ抽出、データ分析、データ活用推進などを行っているとのこと。
またチョイス事業部だけでなくChiica事業部のデータ業務も一部行っているなど、社内のデータ活用を横串で行う組織構造となっていることがうかがえました。

講演では、このデータマネジメントグループについて育成方法をお話しいただきました。

 

これまでのデータ組織の歩み



トラストバンクにおいてデータ組織が発足したのは2019年12月とのこと。
そこから現在までのあゆみについては上記のように大きく3フェーズに分かれています。

フェーズ①基盤構築期



トラストバンクでは、データチームが発足するまでふるさとチョイスのデータベースから直接データをとっていたそう。
そのためまずデータ分析基盤を構築するところから始まります。

町田:当初Amazon Redshiftを導入したものの、コスト面とGoogle Analyticsとの互換性があるという理由からGoogleのBigqueryにリプレイスし、現在もBigqueryを活用しています。

最初期に当たる分析基盤の構築をしていた時期はデータ抽出の要員が足りておらず、データエンジニアがアナリスト業務を担当するなど個々の役割のみに限らず柔軟に必要とされる業務を行っていました。

フェーズ②データ量産・データカオス期



フェーズ②データ量産・データカオス期では事業部で求められるデータをたくさん出して、データ活用が一気に進んだ時期となります。

データ基盤の構築ができ、各方面でデータ活用が進むに伴って、以下の課題が出現します。

  • データチームの工数の大半が抽出依頼への対応に割かれている
  • 目的のデータがどこにあるのかわかりづらい状態に
  • 似たようなダッシュボードが複数存在していたり、同じ指標なのにダッシュボードによって数字が異なるケースが発生
  • 大元のデータベースと分析基盤とでデータの差異が発生(データの鮮度)


町田:
安定的にデータ活用を行うためのリソースが不足していた結果、上記のようなイシューが発生していました。
このフェーズではそれまで柔軟に行っていたアナリスト業務とエンジニア業務を明確に仕分けするとともに、データカオスな状況を打破すべくデータスチュワード*1の役割を新設しました。
データスチュワードはデータに関する管理人、番人のような役割を果たします。

これによりデータマネジメントグループの個々の役割が整備され、データカオスの脱却に向かったのです。


* 1データスチュワードとは、「データを、スチュワード(他人から預かった資産を、責任をもって管理運用)する部署または人のこと」です。
具体的には、以下のようなことを行います。
・データモデル仕様に関する検討、改善
・データクオリティ要件およびビジネスルールの定義と維持
・データ資産の監視(データの品質・利用に関する問題がないかチェック)
・問題が発生した際には、CDOに報告
出典:NTTDATA「データスチュワードとは? データマネジメント用語をわかりやすく解説」(2024年11月13日利用)


フェーズ③課題解決・売上創出期




フェーズ②データ量産・データカオス期ではデータマネジメントグループの個々の役割が整備されデータカオスの脱却に向かいました。
それまで生じていた課題については、以下のようにして課題解決と利益創出に尽力しているそうです。

課題解決
データチームの工数の大半が抽出依頼に割かれている
→ビジネスサイドでも、SQLを使わず自由にデータが出せるようにした(抽出セルフ化)

目的のデータがどこにあるかがわかりづらい状態に
→Notionに抽出データ一覧、ダッシュボード一覧を整備

似たようなダッシュボードが複数存在していたり、同じ指標なのにダッシュボードによって数字が異なるケースが発生
→未解決。Lookerを導入することで解決する予定

大元のデータベースと分析基盤とでデータの差異が発生(データの鮮度)
→データベースから分析基盤へ、定期的に全件連携を行うことでデータの差異をなくした

利益創出

  • 抽出セルフ化によって空いた工数を、部署にアサインしての分析活動にあてた
    →意思決定や施策につながるような分析活動が徐々に増えている
  • これまでは基盤構築やデータ活用の課題解決など守りに手一杯だった
    →現在は売上創出につながる攻めの動きも一歩ずつ進んでいる

 

データ人材を活用し、成果を出すために持っておくべき考え方

 

そもそもデータ人材の成果とは?



町田:前提としてデータにおける攻めも守りも成果だという考え方は持っておくべきです。
データ活用がそのまま売上に直結することはなく、たいていの場合データ活用から得た示唆を落とし込んだサービスや企画が利益を創出します。
そのうえでデータ分析基盤が安定することはその後の分析活動の礎となるため、安定していることが当たり前と思われがちだが、重要な業務であり十分成果と言えるでしょう。
業界内ではデータ分析やデータドリブンが長く重要だと言われ続けています。
しかし改めて考えてみると、データ分析の一番良いところは、答えのヒントがデータの中にあり、失敗したとしてもいつか答えにたどり着くところだと考えられます。
そのため企業のデータチームが存続していく上で必ず必要となる「データ活用の不を減らす、無くすこと」も現場でのデータ活用のスピードや質が上がり間接的に事業の成長に貢献しているのです。

 

目的やゴールの達成状態、課題や背景をできるだけ細かく言語化した上で、あとはデータ人材に自由にやってもらう。



町田:例えば、抽出セルフ化の例では都度確認をいれず、自由度を上げた方がスピードが早くなります。現場に100%の時間を使っていない自分より、毎日現場で起きる事象と向き合っているメンバーのスキルを信じて任せています。
その他にも「ある程度自由に」、の「ある程度」の範囲は、個人の性格やパフォーマンスを見て設定しています。
人によって依頼の深度は変えて、必要であれば具体的なタスクに落とし込むこともあります。
ここで絶対に抑えておくべきは、いつまでに何を達成するかの期限の把握となります。
実はデータの取り組みに関しては期限がないことが多く、業務がスタックしないよう事前に決めておきます。

 

チームの目標、ミッション、重要アクションを整理する。ミッションがあることでメンバーが主体的にアクションを起こせる状態にする



町田:「目的やゴールの達成状態、課題や背景をできるだけ細かく言語化した上で、あとはデータ人材に自由にやってもらう。」ためには、まずメンバー自身が何をするべきか理解しておかなくてはいけません。
チームが目指すべき状態、それを達成するために何が必要かを整理した上で、実際に重要アクションをお願いしています。また重要アクションのロードマップも作成し、メンバー間で共通認識を持つようにしています。

 

業務系の仕事は自動化するか、極力やらない。



町田:BigQueryは容易にレポート作成やデータ抽出ができるため、各部署からの依頼が殺到しやすくなります。
しかしある一定のラインを超えると、データ人材は売上や利益に貢献しやすい業務に注力するために、業務に優先順位をつける必要が出てきます。
データ人材にしかできない仕事、価値を発揮できることがあるためデータ抽出をセルフ化することやデータ更新を自動化することも重要となります。
また自動化のために、データ人材をメンバーズデータアドベンチャーのような外部ベンダーを取り入れるのも1つの手といえるでしょう。

 

 

新しい技術を積極的に取り入れる

町田:データ領域周辺の技術は進歩のスピードが速く、活用の幅も年々広がっています。
そのため、成果創出には先進的な取り組みを行っている会社の事例を参考にしつつ、積極的に新しい技術を取り入れる必要があります。
特にデータエンジニアリングに関しては、新しい取り組みを行った方がメンバーのモチベーション維持にもつながるため会社にとっても本人にとってもプラスになる取り組みと考えています。

 

若手専門人材との接し方

 

【前提】若手人材は長く在籍することで中長期的に価値を発揮しやすい



上記はトラストバンクに在籍する若手データ人材の成果の量や質について、在籍時間の経過とともにどのような変化がみられるかを表した図です。

町田:若手のデータ人材は着任後数か月間、データになれること、ドメイン知識や事業内容の理解に時間を要することが多いです。そのため成果の量や質の変化は緩やかです。
しかし数ヶ月〜1年を乗り越えると、事業に対する理解度や想いも強くなり生産性の向上がうかがえるため、成果の質・量の変化が大きくなる傾向があります。
一方、数ヶ月で成果が出ないことを理由に次のメンバーをアサインした際は、当然その都度知識や事業理解のコストがかかるため結果的には効率的でないことが多いです。
上記を前提としたうえで、トラストバンクでは多くのメンバーが長期的に在籍してくれているのでその要因を深ぼっていきたいと思います。

 

工数の30-50%は若手人材にとって成長につながるチャレンジ

 

町田:前提でもお伝えした通り若手のデータ人材は長く在籍することで中長期的に価値を発揮しやすくなるため、本人の意思やキャリア志向を尊重し、成長につながる経験をし続けることが価値創出の第一歩です。本人の意思やキャリア志向がマッチしないままの業務では成長できないと感じ早期離職を生み出す要因となってしまいます。
そのため全体の30%~50%に関してはできるだけ本人のキャリア志向とマッチし、かつ成長できるチャレンジ業務を任せることが必要となります。

 

心理的安全性の高い状態を保つ

町田:データ人材に限らずとも、若手のメンバーは特に職場での心理的安全性を確保しておく必要性があります。実際に心がけている意識と行動は以下の通りです。

特に若手であればスキル不足により業務がうまく進まない、他部署との繋がりが少ないためコミュニケーションコストが発生するといったことも往々にしてあり得ます。
そのような場合には業務がスタックしている部分がどこなのかを把握しフォローに入ることや他部署への橋渡しを丁寧に行う必要があります。
うまく進まない場合はメンバーのキャパシティを再度把握しなおし、依頼する業務の再配分を行うことでメンバーの心理的安全性の担保を図っています。

 

【その他】マネジメントの落とし穴にハマらないように気をつける

町田さんがメンバーと接する際、個人的に気を付けていることの1つにマネジメントの落とし穴にはまっていないか?を定期的に確認することがあげられるそうです。

町田:具体的な項目は図にある通りです。適切なマネジメントが出来ているのかと疑心暗鬼になった方はこのような項目で振り返ってみるのもよいかもしれません。

 

【その他】Winsession

トラストバンクではWinsessionというMTGを行っているとのこと。
Winsessionではメンバー一人ひとりが今週の自分のコンディションについて天気で表し、頑張ったことや一言コメントを披露する会で、それに対しマネージャーから今週よかったポイントを伝えようというものです。
メンバーの頑張りを誉めあい気持ちよく週末を迎えること、リモートワークでも気軽に話せる場を設けるという目的で実施されているそうです。

マネージャー目線ではメンバーの健康状態やモチベーションを把握できるという点、メンバー間では普段かかわらない社員の状況が把握できるという点で好評のため、リモートワークでコミュニケーションに悩まれている部署があれば取り入れてみてはいかがでしょう。

まとめ

 

データ人材を活用して成果を出すためには

  • 目的や達成状態をできるだけ細かく言語化した上で、あとは自由にやってもらう。
  • 業務系の仕事はできるかぎり自動化。
  • 新しい技術を積極的に取り入れる。

若手データ人材の活かし方

  • 長い目でメンバーの成長を見守る。
  • メンバーのWillを大切に。工数の30-50%はそこにさけるようにする。
  • 心理的安全性を確保できるようにフォロー。

 


\ データ活用についてのご相談はメンバーズデータアドベンチャーまで /

 お問い合わせはこちら > 

 

▶こちらも要チェック

データアドベンチャーのサービスご紹介

 

 

マーケティング編集部

 

自走力が高く、“中の人”目線で動ける
データ活用のプロフェッショナルを提供します

お問い合わせ

データ活用のプロになるための
学習・実践環境を用意します

採用情報